

FD-2759

B.Sc./B.Sc. B.Ed. (Part-III) Examination, 2022

MATHEMATICS

Paper - II

Abstract Algebra

Time: Three Hours] [Maximum Marks: 50

नोट : प्रत्येक प्रश्न से किन्हीं दो भागों के उत्तर दीजिए।

सभी प्रश्नों के अंक समान हैं।

Note: Answer any two parts from each question. All

questions carry equal marks.

इकाई / Unit-I

1. (a) मान लीजिए R^+ सभी धन वास्तविक संख्याओं का गुणात्मक समूह है। एक प्रतिचित्रण $f: R^+ \to R^+, \ f(x) = x^2, \ \forall \ x \in R^+$ द्वारा परिभाषित है। सिद्ध कीजिए कि f एक स्वाकारिता है।

Let R^+ be the multiplicative group of all strictly positive real number. Define $f: R^+ \to R^+$ by $f(x) = x^2$, $\forall x \in R^+$

Prove that f is an automorphism.

(b) उपसमूह के प्रासामान्यक को पिरभाषित कीजिए। सिद्ध कीजिए कि किसी समूह के उपसमूह को प्रासामान्यक, समूह का एक उपसमूह होता है।

Define a normalizer of a subgroup. Prove that a normalizer of a subgroup of any group is a subgroup of a group.

(c) मान लीजिए कि G कोटि 108 का एक समूह है। दिखाइए कि G का कोटि 27 या 9 के एक प्रासामान्य उपसमूह का अस्तित्व होता है।

Let G be a group of order 108. Show that there exists a normal subgroup of order 27 or 9.

इकाई / Unit-II

 (a) सिद्ध कीजिए कि एक वलय का प्रत्येक विभाग वलय, उस वलय का समाकारी प्रतिबिम्ब होता है।

Prove that every quotient ring of a ring, is homeomorphic image of the ring.

(b) सिद्ध कीजिए कि पूर्णांकों का वलय एक मुख्य गुणजावली वलय होता है।

Prove that ring of integers is principal ideal ring.

(c) दर्शाइए कि ए R-मॉड्यूल M के दो उपमॉड्यूल का सर्वनिष्ठ भी M का एक उपमॉड्यूल होता है।

Show that the intersection of two submodules of an R-module M is also a submodule of M.

इकाई / Unit-III

- 3. (a) K के किस मान के लिए सिंदश (1, K, 5), $V_3(R)$ में सिंदशों (1, -3, 2) और (2, -1, 1) का एकघात संचय है।
 - Find the value of K for which the vector (1, K, 5) of $V_3(R)$ is a linear combination of (1, -3, 2) and (2, -1, 1).
 - (b) सिद्ध कीजिए कि प्रत्येक परिमित जिनत सिदश समिष्ट का एक परिमित आधार होता है। Prove that every finitely generated vector space has a finite basis.
 - (c) V₄ के रैखिक सिंदशों के उपसमुच्चय {(1, 0, 1, 0), (0, 0, 0, 1)} को V₄ के आधार के रूप में विस्तारित कीजिए।
 - Extend the linearly independent subset $\{(1, 0, 1, 0), (0, 0, 0, 1)\}$ of V_4 to form a basis of V_4 .

डकाई / Unit-IV

4. (a) सिद्ध कीजिए कि प्रतिचित्रण $f: V_2(R) \to V_3(R)$, जो f(a, b) = (a + b, a - b, b) से परिभाषित है, एक रैखिक रूपांतरण है।

Prove that the mapping $f: V_2(R) \to V_3(R)$ which is defined by f(a, b) = (a + b, a - b, b) is a linear transformation.

(b) रैखिक रूपांतरण $T: V_2 \to V_3$ जो $T(x_1, x_2) = (x_1, x_1 + x_2, x_2)$ द्वारा परिभाषित है। T का परास, अघ्टि, जाति तथा शून्यता ज्ञात कीजिए।

A linear transformation $T: V_2 \rightarrow V_3$ be defined by $T(x_1, x_2) = (x_1, x_1 + x_2, x_2)$. Find the range, kernel, rank and nullity of T.

(c) लैग्रांज की समानयन विधि से द्विघाती समघात

$$q = x_1^2 + 2x_2^2 - 4x_1x_2 - 7x_3^2 + 8x_1x_3$$

का विहित समघात में समानयन कीजिए और उसकी जाति, सूचकांक और चिह्निका ज्ञात कीजिए। By the method of Lagrange's reduction, change the quadratic form

$$q = x_1^2 + 2x_2^2 - 4x_1x_2 - 7x_3^2 + 8x_1x_3$$

into canonical form and find its rank, index and signature.

इकाई / Unit-V

- 5. (a) क्या $(\alpha, \beta) = a_1 \overline{b_2} + a_2$, $\alpha = (a_1, a_2)$, $\beta = (b_1, b_2)$ एक आंतर गुणन है?

 Is $(\alpha, \beta) = a_1 \overline{b_2} + a_2$, $\alpha = (a_1, a_2)$, $\beta = (b_1, b_2)$ an inner product?
 - (b) श्वार्ज असिमका का कथन लिखकर सिद्ध कीजिए।

State and prove Schwartz's inequality.

(c) सिद्ध कीजिए कि एक आंतर गुणन समिष्ट में सिदशों का प्रासामान्य समुच्चय रैखिकतः स्वतंत्र होता है।

Prove that in an inner product space, any orthonormal set of vectors is linearly independent.

DRG_243 (7)