Lecture 18

Chapter 34

James Clerk Maxwell was the pioneer of color photography, and presented the first durable color photograph in 1861.

Course website: http://faculty.uml.edu/Andriy Danylov/Teaching/PhysicsII

 $\oint \mathbf{E} \cdot d\mathbf{A} = \frac{q_{enc}}{\varepsilon_0}$

 $\oint \mathbf{E} \cdot d\mathbf{s} = -\frac{d\Phi_{\rm B}}{dt}$

 $\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt} + \mu_0 i_{enc}$

 $\oint \mathbf{B} \cdot d\mathbf{A} = 0$

Lecture Capture: <u>http://echo360.uml.edu/danylov201415/physics2spring.html</u>

Inductors (solenoids) store potential energy in a form of a magnetic field.

Inductance (definition)

1 henry = 1 H = 1 Wb/A = 1 T m2/A

We also found inductance of a solenoid:

$$L = \frac{\Phi_m}{l} \qquad \Longrightarrow \qquad L = \frac{\mu_0 N^2 A}{l}$$

Energy stored in inductors

$$U_L = \frac{1}{2}LI^2$$

95.144, Summer 2015, Lecture 18 Department of Physics and Applied Physics

Solenoid magnetic

field

Potential Difference across an Inductor

ConcepTest 1 ΔV Inductor

 Which current is changing more rapidly?

 $\Delta V = -L\frac{dI}{dt}$ $\left(\frac{dI}{dt}\right)_{1} = -\frac{\Delta V_{1}}{L_{1}} = -\frac{2V}{2H}$ $\left(\frac{dI}{dt}\right)_{2} = -\frac{\Delta V_{2}}{L_{2}} = -\frac{4V}{1H}$

$$^{+}$$

2 H $^{-}$ 2 V
 I_1 $^{-}$

+

Let's revisit Ampere's Law a straight wire with current I

The line integral of the magnetic field around $\vec{B} \cdot d\vec{s} = \mu_0 I_{in}$ The line integral of the magnetic field $\vec{B} \cdot d\vec{s} = \mu_0 I_{in}$ the curve is given by Ampère's law:

Current which goes through Any closed loop (Amperian loop) ANY surface enclosed by an amperian loop

Let's consider a straight wire with current I:

In this example both surfaces (S1 and S2) give us the same enclosed current, as it should be since Ampere's law must work for any possible situation. Great! Ampere's Law works!

Let's revisit Ampere's Law for <u>current I and a capacitor</u>

Let's consider a wire with current I and a capacitor:

Department of Physics and Applied Physics

Displacement current/ <u>*Ampere-Maxwell Law*</u>

Let's get somehow an <u>additional term with units of current</u> and use it to generalize Ampere's Law

But we need something which has units of current. So let's take a derivative:

$$I = \frac{dQ}{dt} = \frac{d(\varepsilon_0 \Phi_E)}{dt} = \varepsilon_0 \frac{d\Phi_E}{dt}$$

Maxwell interpreted as being equivalent current and called it

 $a \underline{Displacement \ current}} \begin{bmatrix} I_D = \varepsilon_0 \frac{d\Phi_E}{dt} \end{bmatrix}$ $\oint \vec{B} \cdot d\vec{s} = \mu_0(I_{in} + I_D) = \mu_0(I_{in} + \varepsilon_0 \frac{d\Phi_E}{dt}) \underbrace{Ampere-Maxwell \ Law}$

Displacement current

Displacement current

1) The displacement current is only between the plates since $\Phi_E = EA$ is zero outside

2) The way I_D was introduced allows us to say that numerically $I_D = I$ (real current in the wire charging the capacitor). In some sense <u>"current" is conserved all the</u> way through the capacitor

3) $I_{\underline{D}}$ is not a flow of charge. It is equivalent to a real current in that it creates the same magnetic field

Let's apply Ampere-Maxwell Law for the "capacitor system"

Now it works. Each surface gives us the same answer as it should be.

Induced Magnetic Field

Ampere-Maxwell Law

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 (I_{in} + \varepsilon_0 \frac{d\Phi_E}{dt})$$

Thus, the magnetic field B can be generated by:

- 1) An ordinary electric current, I_{in}
- 2) Changing electric flux (particularly, <u>changing electric field</u>)

<u>Another amazing thing!!!</u>

Changing electric field inside a capacitor produces a magnetic field

Induced Fields

 An increasing solenoid current causes an increasing magnetic field, which induces a circular electric field.

Faraday's law describes an induced electric field.

• An increasing capacitor charge causes an increasing electric field, which induces a circular magnetic field.

Gauss's Law for Magnetic Fields

Gauss's law for the electric field says that for any closed surface enclosing total charge Q_{in} , the net electric flux through the surface is:

$$(\Phi_{\rm e})_{\rm closed\ surface} = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{\rm in}}{\epsilon_0}$$

There is a similar equation for a magnetic flux

Magnetic field lines form continuous curves; every field line leaving a surface at some point must reenter it at another.

Gauss's law for the magnetic field states that the net magnetic flux through a closed surface is *zero*:

$$(\Phi_{\rm m})_{\rm closed \ surface} = \oint \vec{B} \cdot d\vec{A} = 0$$

There is a net electric flux through this surface that encloses a charge.

through this closed surface.

Maxwell's Equations

Electric and magnetic fields are described by the four Maxwell's Equations: the physical meaning

 $\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{in}}}{\epsilon_0}$ Gauss's law An electric field is produced by a charge

 $\oint \vec{B} \cdot d\vec{A} = 0$ Gauss's law for magnetism *No magnetic monopoles*

 $\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_{\rm m}}{dt} \quad \text{Faraday's law} \quad \begin{array}{l} An \ electric \ field \ is \ produced \\ by \ a \ changing \ magnetic \ field \end{array}$

 $\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{\text{through}} + \epsilon_0 \mu_0 \frac{d\Phi_e}{dt} \text{ Ampère-Maxwell law} \qquad \begin{array}{l} A \text{ magnetic field is produced} \\ by a \text{ changing electric field} \end{array}$

or by a current

In addition to Maxwell's equations, which describes the fields, a fifth equation is needed to tell us how matter responds to these fields:

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$
 (Lorentz force law)

There are a total of 11 fundamental equations describing classical physics:

- 1. Newton's first law
- Newton's second law 2
- Newton's third law 3
- Newton's law of gravity 4.

- **Physics I**
 - 5. Gauss's law
 - 6. Gauss's law for magnetism
- *Physics II* 7. Faraday's law
 - 8. Ampère-Maxwell law
 - 9. Lorentz force law

10. First law of thermodynamics

Physics III

11. Second law of thermodynamics

What you should read Chapter 34 (Knight)

Sections

- > 34.1 (skip)
- > 34.2
- > 34.3
- > 34.4

See you on Monday

