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Inductors (solenoids) store potential energy in
a form of a magnetic field.
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Inductance (definition)

Consider a solenoid of N turns with current 1. Induc}or coil
The coefficient of proportionality is called B __Solenoid
inductance, L b= magnetic
field
L
I

The SI unit of inductance is the henry, defined as:  Current
1 henry=1H=1Wb/A=1Tm2/A

We also found inductance of a solenoid:

Energy stored in inductors
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Potential Difference across an Inductor

Induc}or coil
D
dd,, P d LI dl
AV=E=——T= |- _duh_dl 'S
dt @, = LI dt dt <
Potential difference across an inductor I <« Aav >
~ Current /
Note ¢ The magmtude of | has no effect on AV, only the rate of change of | counts.
Inductor coil
/
S IKAKHN
If current increases, — > 0 |:> AV <0 |::> r UUU{U\I b -
Ina
AV = V; — Vi <0,s0 Vs <V, '”'“a'T

current/V/; V¢ The induced AV decreases if
the current is increasing

d I Induc}or coil

If current decreases, 7, <0 E:> AV >0 |:>
|n|t|al VAVAVAV,

similar  Vy >V

Current [ V V . .
LAV 3f  The induced AV increases if
If current is constant,|=const|:> AV =0 the currentis decreasing
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g=AV across a solenoid when the current increase
(Physics)

»B ind Induced |
> Magnetic filed

Magnetic filed <«
created by 1

Current /
(increases)

I/I:> B/I:> (I)B/E> B4 lBext II> I;,4 is in the opposzte direction

Binq OppoOses Be,j io a direction of 1

inside the loop Th batt
(Lenz's Law) is'is an "imaginary battery"“

& fj?’\\\s which can create this induced current
| ThusV;>V; [ AV <0
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ConcepTest 1 AV Inductor

e Which current is changing A. Current I

more rapidly?

C. They are changing at the same rate

D. Not enough information to tell
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Let,S reViSit Am pe e ’S LaW a straight wire with current 1

The line integral of the magnetic field around

i I gi‘z‘;l““ the curve is given by Ampere’s law:

,,,,, L
'

Any’E"losed loop Current which goes through
(Amperian loop)  ANY surface enclosed by an amperian loop

Let’s consider a straight wire with current I:

Surface S, (flat)

Surface S,

In this example both surfaces (S1 and S2)
give us the same enclosed current, as it
CB_J should be since Ampere’s law must work

for any possible situation.

Great! Ampere’s Law works!

~.__Amperian loop

-~
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Le't’S rEViSit Am pere’S LaW for current I and a capacitor

Let’s consider a wire with current I and a capacitor:

|
Q

I

N

Amper;an loop “~__Surface S 2

Let’s apply Ampere’s law for both surfaces (S1 and S2):

The LH sides are the same, but the RH
sides are different!!??

omething is missing in Ampere’s law.
So!

Ampere’s Law needs to be adjusted!

fB'dg):”OIin E> I, =1 > %E'd:g:ﬂo
Amperian loop Surface S, (flat)

jﬂﬁ-aﬁ:uol,-n = I, =0

Amperian loop Surface S, (curved)
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Displacement current/ Ampere-Maxwell Law

Let’s get somehow an additional term with units of current and use it to

generalize Ampere’s Law C -+Q _ -Q
. >
cu 2 1 E |

AV I=dQ/di| - |1

—F] = e

c=e, | A : -
= &9 "
Q =CAV = Od 2(80—)Ed =gOEA= (I)EzEA =£O(I)E I d -
AV = Ed d e d |

But we need something which has units of current. So let’s take a derivative:

dQ d(&0Pg) dog
[=— =—° "2 —gy——
dt dt dt

a Displacement current| I =
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\
1) The displacement current is only between the plates ‘\

since ®r = EA is zero outside \

Displacement current —E
—— I + I - | I
Displacement current | [, = g, % _$> 345 7&’ = 3

\

~

/

2) The way I, was introduced allows us to say that numehcﬂl]fj —I (real current
in the wire charging the capacitor). In some sense * urre)‘lt” is conserved all the
way through the capacitor

3) I is not a flow of charge. Itis equivalent to a real current in that it creates the
same magnetic field

Let’s apply Ampere-Maxwell Law for the “capacitor system”
=1

Surface S (flat) +£a——> g_a B dS — ”O (Im+ID) - ln . 0 = I'l'o |
I, | s % I, ; . Amperian  Surface S,
U . N E B-ds = po(Uin+p) =|1in = O = o 1
i ID =1

Amperian loop - Sm; ace S, Amperla” Surl ace Sg
Now it works. Each surface gives us the same answer as it should be.
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Induced Magnetic Field

Ampere-Maxwell Law

Thus, the magnetic ﬂekl—B’ can be generated by:
1) An ordinaryelectric current, I, .

——”

==
——
— i ————————

2) Changing electric flux (particularly, changing electric field)

Another amazing thing!!!

Changing electric field inside a capacitor produces a magnetic field
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Induced Fields

Induced F

\

"  An increasing solenoid current causes B
an increasing magnetic field, which b >
. . . 1
induces a circular electric field. .
Increasing solenoid current  # Increasing B

Faraday’s law describes an induced electric field.

Induced B
E \
"  An increasing capacitor charge >

causes an increasing electric field, >

which induces a circular magnetic Q >

ﬁ eld. Increasing capacitor charge Increasing E
The Ampere-Maxwell law describes
an induced magnetic field.
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Gauss’s Law for Magnetic Fields

Gaussian surface

Gauss’s law for the electric field says that for any

closed surface enclosing total charge Q,,, the net
electric flux through the surface 1s:

Qin

€o

((I)e)closed surface E-dA =

There is a net electric flux through
this surface that encloses a charge.

There 1s a similar equation for a magnetic flux

Gaussian surface
l /

Magnetic field lines form continuous curves; every field line
leaving a surface at some point must reenter it at another.

Gauss’s law for the magnetic field states that the net
magnetic flux through a closed surface is zero:

((I)m)closed surface

There is no net magnetic flux
through this closed surface.
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Maxwell’s Equations

Electric and magnetic fields are described by the four Maxwell’s Equations:
the physical meaning

_)

jgﬁ ‘dA = % Gauss’s law An electric field is produced by a charge
€o

%B’ -dA = 0 Gauss’s law for magnetism No magnetic monopoles

- dd,, ! An electric field is produced
E-ds=— 7 Faraday's law  py, 4 changing magnetic field

S d®d, A magnetic field is produced
ng ds = polinrough T €okbo dr Ampere-Maxwell 1aw  py g changing electric field
or by a current

In addition to Maxwell’s equations, which describes the fields,
a fifth equation is needed to tell us how matter responds to these fields:

F = g(E +V X B) (Lorentz force law)
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There are a total of 11 fundamental equations
describing classical physics:

10. First law of thermodynamics .
Physics 11

11. Second law of thermodynamics
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What you should read
Chapter 34 (Hnight )

Sections

> 34.1 (skip)
> 34.2

> 34.3

> 34.4
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Thant you
See you on Wonday
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